
COVID-19 and Transportation

Transportation Research Record
2023, Vol. 2677(4) 448–462
� National Academy of Sciences:
Transportation Research Board 2022

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/03611981221083606
journals.sagepub.com/home/trr

Pedestrians and the Built Environment
during the COVID-19 Pandemic:
Changing Relationships by the Pandemic
Phases in Salt Lake County, Utah, U.S.A.

Keunhyun Park1 , Patrick A. Singleton2 ,
Simon Brewer3 , and Jessica Zuban4

Abstract
The COVID-19 pandemic has dramatically altered people’s travel behavior, in particular outdoor activities, including walking.
Their behavior changes may have prolonged effects after the pandemic, and such changes vary by the context and are related
to the characteristics of the built environment. But empirical studies about the relationships between pedestrians and the
built environment during the pandemic are lacking. This study explores how COVID-19 and related travel restrictions have
affected the relationship between pedestrian traffic volume and the built environment. We estimate daily pedestrian volumes
for all signalized intersections in Salt Lake County, Utah, U.S.A., from pedestrian push-button log data between January 2019
and October 2020. Multilevel spatial filtering models show that the COVID-19 pandemic has altered the relationship between
pedestrian traffic volume and the built environment. During the pandemic, the higher the number of COVID-19 cases, the
less (or more negative) the effects of density, street connectivity, and destination accessibility on pedestrian volume being
observed. The exception is access to urban parks, as it became more significant in increasing pedestrian activities during the
pandemic. The models also highlight the negative impacts of the pandemic in economically disadvantaged areas. Our findings
could help urban and transportation planners find effective interventions to promote active transportation and physical activ-
ity amid the global pandemic.
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An accurate prediction of pedestrian traffic volume is an
essential goal for urban and transportation planners.
Pedestrian traffic estimates are inputs to traffic safety
analyses, health impact assessments, and guidelines on
urban development. Walking activity contributes to the
economic and social vitality of an urban area (1, 2).
Because the walking activity is highly affected by the
environmental context such as urban forms and streets-
cape, planning agencies started to model pedestrian
travel demand based on built-environment data (3, 4).

The COVID-19 pandemic has greatly altered people’s
travel behavior, in particular outdoor activities, includ-
ing walking (5–7). The decrease in walking during the
pandemic is related to fear of physical contact with other
people as well as external enforced measures such as

travel bans (8). People’s behavior changes may have pro-
longed effects in the new normal after the pandemic, and
such changes vary by the context and are related to the
characteristics of the built environment. But empirical
studies about the changing relationships between
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pedestrians and the built environment are lacking.
Without appropriate evidence, the current travel demand
models may not accurately predict pedestrian traffic vol-
ume during the pandemic. A lack of (or inappropriate)
interventions in the urban built environment may worsen
the pandemic’s uneven impacts on different socio-
economic groups.

Thus, this study explores how COVID-19 and related
conditions (e.g., travel restrictions) have affected the
relationship between pedestrian traffic volume and the
built environment. We estimate daily pedestrian volumes
for all signalized intersections in Salt Lake County,
Utah, U.S.A., from pedestrian push-button log data
between January 2019 and October 2020. Then, using
multilevel spatial filtering models, we explain the pedes-
trian estimates in relation to the built-environment ‘‘D’’
variables—development density, land use diversity, street
network design, distance to transit, and destination
accessibility (Ewing and Cervero [9])—with the travel
restriction phases as a moderator. Our results offer
potential implications for travel demand modeling and
forecasting, pedestrian safety analysis, and reducing the
socio-economically uneven impacts of the pandemic.
They could also help urban and transportation planners
find effective interventions to promote active transporta-
tion and physical activity amid the global pandemic.

Literature Review

Impact of Pandemics on Travel Behavior

Respiratory viral pandemic outbreaks such as SARS
(severe acute respiratory syndrome), H1N1, and MERS
(Middle East respiratory syndrome) have negatively
affected travel behavior (8, 10–12). Similarly, the
COVID-19 pandemic has resulted in a general decrease
in travel (7, 13–17). A study using Citymapper’s mobility
index showed that mobility declined in all major cities
globally throughout March 2020, and closures of public
transportation, workplaces, and schools had a substan-
tial impact on reducing population mobility (17).

The decrease in travel during past pandemics was
found to be associated with a combination of internal
motivations (e.g., perceived risks) and external enforced
measures (e.g., travel bans, stay-at-home orders) (8).
Internal motivations of perceived risk caused behavior
change as people appeared to voluntarily engage in self-
protection and reduce or postpone consumption to avoid
risk (8, 10). Behavioral changes tend to happen at the
beginning of the epidemic when less information is
known and to lessen as time goes on (11, 14).

Beck and Hensher (18) conduct a multi-paper longitu-
dinal travel and activity survey in Australia to under-
stand the effects of COVID-19. Their first paper reported
findings from a survey at the beginning of lockdown at

the end of March. It found that 78% of respondents had
already made changes to their travel behavior, the largest
reduction with private cars followed by public transpor-
tation (18). On the other hand, respondents reported
their use of active transportation increased from 14% to
20% after the COVID-19 outbreak began (18). The sec-
ond phase of the study took place in May and June after
the first outbreak leveled off and restrictions began to
ease. Aggregate travel activity had increased 50% since
the initial lockdown but was still less (66%) than pre-
COVID-19 travel (5). More people reported increasing
use of active transportation (e.g., walking, running, and
cycling) during May and June than decreasing use (5).
Future plans to use active modes of transportation were
very similar and even more promising in the case of walk-
ing (5).

Travel Preference by Mode

Other studies also show that preferences of travel mode
have shifted during the COVID-19 outbreak. Perceived
risk in public transportation, taxi, and ride-hailing ser-
vices is higher than in private vehicles, biking, scootering,
and walking (18–20). A study in 2009 found that the use of
public transportation was a significant risk factor for con-
tracting acute respiratory infections (20). In King County,
Washington, USA, residents in higher-income neighbor-
hoods chose to drive to work rather than use public trans-
portation in the early days of the outbreak (13).

Social distancing measures have encouraged people to
avoid areas with increased social contact and resulted in
the cancellation of out-of-home activities (21). De Vos
(21) hypothesizes that walking and cycling may increase
as people opt for active travel to commute and for recrea-
tion. In fact, cycling has seen a surge in volume, particu-
larly in major cities like New York and Berlin (6). Citi
Bike, a bike-share system in New York, has had a 67%
increase in ridership compared with a year ago, while
subway use declined 92% (6). In Switzerland, bicycle use
increased a significant amount, especially during week-
end afternoons, suggesting an increase in leisure activity
(7).

Travel Reduction by Destination and the Built
Environment

Decreases in travel vary by destination type. In a study
using Google Mobility Reports in 771 urban counties in
the U.S. (14), travel to parks had the least average reduc-
tion (0.4%) and the highest variation. Trips to grocery
stores saw a 13.3% reduction, and trips to public trans-
portation saw a 37.4% reduction (14). This may be
caused in part by the higher perceived risk of infection in
public transit vehicles, hospitals, restaurants, and indoor
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gyms and the lower perceived risk for parks and family
members’ or friends’ houses (18, 19). On the other hand,
increased risk perception at one’s workplace did not sig-
nificantly reduce travel (19). This may be a result of eco-
nomic necessity and an inability to work from home for
many people (13).

Before COVID-19, 60% of U.S. residents in urban
areas reported using online grocery shopping and food
delivery from restaurants, while only 29% reported
doing so in suburban areas in part because of the ease of
delivery to urban areas (14, 22). A survey conducted in
Australia during lockdown shows an 18% increase in
online grocery shopping (18). In China, surveys show
online food purchases during lockdown were most likely
among young people living in large cities (23). People in
compact developments have reduced trips to grocery
stores and pharmacies (14), which may be caused by the
observed increase in online shopping.

A study by Chang et al. (24) found that a small num-
ber of ‘‘superspreader’’ points of interest have caused a
large majority of infections. For example, in Chicago,
85% of infections occurred at 10% of points of interest
(24). These points of interest, listed in order of total
cumulative infections, include full-service restaurants,
religious organizations, grocery stores, limited-service
restaurants, cafés and snack bars, hardware stores, auto-
motive parts stores, the office of physicians, other gen-
eral stores, fitness centers, and hotels and motels (24).
Certain points of interest like restaurants and fitness
gyms caused fewer infections than expected, most likely
because of closures, and others like grocery stores caused
more because they remained open (24).

Hamidi and Zandiatashbar (14) explain travel reduc-
tion by the degree of urbanization. According to their
study, people who live in compact developments are
more likely to have multiple shops within walking dis-
tance, resulting in a significantly higher reduction in trips
to grocery stores, pharmacies, and transit stations than
people in sprawling areas (14). The opposite holds true
for park visits, where people in compact developments
with smaller homes and a lack of private green spaces
were less likely to reduce their trips during the shelter-in-
place order (14).

Travel Reduction by Socio-demographic Groups and
Equity Issues

Reduction in travel varies between different socio-
demographic groups during COVID-19 (5, 14, 16, 24).
Highly educated people, older adults, and Hispanics
have reduced travel more since the COVID-19 outbreak,
while children and Trump voters have reduced their
travel to a lesser degree than other groups (14). Studies
on risk perception of influenza determined that males are

less likely to alter travel patterns, avoid public places,
and stay at home than females or people with influenza-
like symptoms (7, 15, 18).

Lower-income households reported little change in
their travel behavior during lockdown (5, 16). Because
disadvantaged groups have not been able to reduce their
travel, the places they visit (e.g., grocery stores and snack
bars) are more crowded, and therefore pose a higher risk
(24). This difference in equity is important because it rep-
resents both causes and consequences of the effects of the
pandemic. Because more-disadvantaged groups travel at
higher rates than more-educated and higher-income
groups during the pandemic, higher viral transmission
rates can occur (13).

Travel behavior during the COVID-19 pandemic also
showed socio-demographic disparities in the use of pub-
lic transportation (5, 13). Residents of more-educated
neighborhoods were able to engage in a greater degree of
mode substitution, using cars instead of public transpor-
tation (13). Lower-income groups have lower access to
cars and are dependent on public transportation, and are
relatively unable to work from home (5, 13, 21).

Conceptual Framework

The COVID-19 pandemic has had a significant effect on
people’s travel behavior globally, but empirical studies
on pedestrian traffic volume and its relationship to the
built environment are lacking. The observed effects on
travel behavior are also limited by the study period.
While some studies show that travel reduced during the
initial months of the pandemic (7, 13–17), there are lim-
ited studies showing how travel trends changed over
time. The normalization of the situation over time likely
positively affected increased travel behavior as it did dur-
ing the MERS outbreak (11), but there are no studies to
support this. In relation to active transportation, few
studies have accounted for actual use instead of relying
on self-reported surveys and company reporting, which
may not reflect reality (5, 6, 18).

Using pedestrian volume estimate data from January
2019 to October 2020, this study explores how COVID-
19 has affected the relationship between pedestrians and
the built environment. Figure 1 shows the conceptual
framework of this study. The COVID-19-related condi-
tions might have significant impacts on people’s walking
behaviors. Not only as an explanatory variable of the
pedestrian volume, the COVID-19 factors are also asso-
ciated with other variables, particularly environmental
factors. As discussed above, travel reduction during the
pandemic varies by destination type, built environmental
characteristics, and socio-demographics of a neighbor-
hood (5, 13, 14, 19, 24). While the impacts of the pan-
demic on the urban form changes are not dramatic in the
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short term (e.g., open street campaigns), pandemic-
related conditions (e.g., travel restrictions, fears of infec-
tion in gathering places, employment status change) may
modify how the built environment affects walking beha-
vior. For example, people may avoid visiting a dense
urban center when (actual or perceived) COVID-19 cases
are high. In this study, we model such a moderating
effect through interaction terms between COVID-19 fac-
tors (e.g., case counts, administrative phases) and each
of the environmental variables (25).

In the literature, built-environment characteristics that
predict pedestrian volumes, such as development density,
land use diversity, street network design, destination
accessibility, and distance to transit, are often called ‘‘D’’
variables (9). Neighborhood socio-demographic attri-
butes also explain pedestrian volumes, which are higher
in areas with lower-income, bigger households, and fewer
cars (26, 27). Temporal factors explaining walking
include the day of the week and weather (28–31).

Data and Methods

The study area is Salt Lake County, the most populous
county in Utah (a population of 1,160,437 in 2019) and
home to the state capital, Salt Lake City (a population of
200,567 in 2019). Like many other U.S. regions, Salt Lake
County is mostly automobile-oriented, partially a result
of large blocks, wide roads, and sprawl developments.

We performed a multilevel analysis because the data
involved two sets of units. Our level 1 units are days,
which is a feasible unit for analyzing traffic volumes
across time and space. In 2020, we included data for all
days in the first 10months (January–October). To

provide a baseline against which to compare changes in
built-environment relationships with walking, we also
included data for all days in 2019 (the full 12months).
Thus, our analysis used up to 670days (level 1 units). Our
level 2 units are intersections with traffic signals, of which
there are around 1,055 in the study area. Since some of
these sites had no pedestrian push buttons (the source of
our dependent variable; see next subsection), our analysis
used 904 signals (level 2 units). As a result, there were a
total of 520,736 observations (days 3 signals), which was
less than theoretically possible, since some signals were
missing pedestrian signal data on certain days.

Dependent Variable: Pedestrian Traffic Volume

The dependent variable of the analysis was daily total
pedestrian crossing volumes, measured at each signal on
each day. The pedestrian traffic volumes were estimated
from data on pedestrian push-button presses, which were
recorded by high-resolution traffic signal controller event
logs (32) and archived in a central database—the
Automated Traffic Signal Performance Measures
(ATSPM) system (33, 34) by the Utah Department of
Transportation (UDOT). Recent research in Oregon (35,
36), Utah (37), and Arizona (38) has found pedestrian
signal actuations to be strongly correlated with pedes-
trian crossing volumes (a correlation coefficient of 0.80
or higher), and models using push-button presses have
been able to predict pedestrian crossing volumes with
low average absolute error (6 3 pedestrians per hour or
less). These kinds of pedestrian signal data have also
been used recently to examine associations with built-
environment characteristics (27) and weather (39).

Figure 1. Conceptual framework of pedestrian traffic volume during the COVID-19 pandemic.
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In this paper, we first assembled pedestrian traffic sig-
nal data from UDOT’s ATSPM system for every signal
in our study area for 2019 and 2020. After processing
and cleaning the data (to note missing data), we applied
pedestrian volume estimation methods developed by
Singleton and Runa (37), which we will summarize
briefly. Based on manual counts of almost 175,000 pedes-
trians during more than 10,000hours of video recorded
at 90 randomly selected Utah signals in 2019, those
authors developed non-linear (quadratic and piecewise
linear) regression models predicting hourly pedestrian
crossing volumes as a function of measures of pedestrian
signal data. The models were of the following forms:

Y =b1X +b2X 2or Y =b1X +b2 max X � br1, 0ð Þ

where Y was the observed pedestrian count, X was the
pedestrian signal data measure, b1 and b2 were estimated
model coefficients, and br1 was the optimized piecewise
linear breakpoint. The best-fitting measures of pedes-
trian signal data X in the regression models were unique
pedestrian detections (push-button presses, removing
those within 15 s of a prior press) and pedestrian actua-
tion (the number of pedestrian phases with one or more
push-button presses). The models also included some
segmentation by signal type (pedestrian hybrid beacon
versus traditional signal), cycle length (shorter versus
longer), pedestrian push-button volume (low versus high
pedestrian activity), and pedestrian operations (phase on
pedestrian recall or not). Using hourly crossing data
from more than 22,500 observations, the correlation
between observed and model-predicted hourly pedestrian
crossing volumes was 0.84, with an average prediction
error of 6 3.0 pedestrians per hour. (See Singleton and
Runa [37], and Singleton et al. [40] for detailed informa-
tion on these methods.)

Returning to the present study, after applying these
pedestrian volume estimation models to our 2019 to 2020
pedestrian data at 904 signals in Salt Lake County, we then
aggregated these results (over hours in a day and crossings
at an intersection) to get our dependent variable: pedes-
trian crossing volumes for each signal and day. Although
endogeneity is always a concern when using estimated data
as the dependent variable in a model, we do not suspect
this to be an issue here. The models used to estimate pedes-
trian volumes (37) relied almost entirely on traffic signal
data. They did not include any of the environmental or
temporal variables (day of week, weather, built environ-
ment, socio-demographics) that were used in this study,
described in the following sections.

Level 1 Variables

Level 1 variables are potentially defined by (and vary
across) both the level 1 units (days) and the level 2 units

(signals). In practice, most of our level 1 variables are
measured on a daily basis, but where the same values are
applied across all signals.

Pedestrian activity is affected by weather, seasonality,
and climatic differences (28–31). Therefore, to control
for these effects (which could otherwise be attributed to
COVID-related changes), we included daily weather
variables, including temperature (in degrees Fahrenheit),
precipitation (in inches), and snowfall (true or false).
Weather data were collected from the Global Historical
Climatology Network (GNCH) daily, a product of the
National Centers for Environmental Information (41).
Specifically, weather data for all signals came from the
weather station at Salt Lake International Airport (sta-
tion USW00024127). While located at the northern edge
of Salt Lake County, the airport station had complete
data and is located in the same valley as the study area
signals, only 23mi from the furthest signal. In addition
to the continuous temperature variable, we added a
dummy variable for 90� in Fahrenheit or higher because
our data suggested the non-linear effect of temperature.
Average pedestrian volume dropped significantly during
days of 90�F or higher. Another approach to handle
such a non-linear effect can be adding a squared tem-
perature variable. The COVID-19 phase variables were
also defined using the same dates for all signals in the
study area. Dates were taken based on state and county
guidelines that mandated or recommended certain restric-
tions on businesses, organizations, gatherings, and travel.
These are intended to measure the effects of government
policies and travel restrictions as well as the public’s per-
ceptions of and reactions to rising COVID-19 case counts,
test positivity rates, hospitalizations, death counts, and so
forth. The four phases we defined in this study are:

� Pre-COVID (Baseline; January 1, 2019–March 5,
2020).

� Phase 1 (High risk; March 6, 2020–April 30,
2020): On March 6, 2020, the Utah governor
declares a state of emergency. Then, Utah K-12
schools take a 2week pause from in-person
classes. Utah colleges and universities cancel in-
person classes for the remainder of the semester.
The Church of Jesus Christ of Latter-day Saints
(with which the majority of Utahns affiliate) sus-
pends in-person gatherings. Between March 27
and 29, the Utah governor, Salt Lake County
mayor, and Salt Lake City mayor issue stay-at-
home directives, orders, and proclamations, with
exceptions for essential activities and work. On
April 17, 2020, the Utah governor introduces a
color-coded system, in which the state is at a
‘‘high-risk’’ (red) level. Salt Lake County issues an
order encouraging face coverings in public places.
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� Phase 2 (Moderate risk; May 1, 2020–October 12,
2020): On May 1, 2020, the Utah governor moves
the state to a ‘‘moderate-risk’’ (orange) level. Salt
Lake County order gradually allows businesses to
reopen with social distancing requirements. About
2weeks later (May 16), the Utah governor moves
the state to a ‘‘low-risk’’ (yellow) level, but Salt
Lake City and West Valley City (in Salt Lake
County) remain at a ‘‘moderate-risk’’ (orange)
level.

� Phase 3 (Second peak; October 13, 2020–October
31, 2020): With increases of new COVID-19 cases,
hospitalizations, and deaths, the Utah governor
updates statewide guidelines with a new county-
based system depending on new cases, test positiv-
ity rates, and statewide hospitalizations on
October 13, 2020. Salt Lake County is rated as
having ‘‘high transmission,’’ and face coverings
are required in indoor public places and outdoors
where social distancing is not possible.

The final level 1 variable is the ‘‘pedestrian recall’’
dummy variable, which (unlike the other level 1 vari-
ables) is true only for certain days and certain signals.
To reduce the spread of COVID-19 through touching
infected surfaces, several dozen traffic signals in and
around downtown Salt Lake City were placed on pedes-
trian recall on April 17, 2020. Signs were placed instruct-
ing pedestrians to not push the pedestrian push-button,
and traffic signals automatically brought up the walk sig-
nal every cycle. On June 29, 2020, the signs were
removed, and the traffic signals went back to normal
actuated operations, in which pedestrians need to press
the button to receive the walk signal (most of the time)
(42). The signals and days when the full pedestrian recall
was in effect have been included in the model. For a sen-
sitivity test, we ran models without those signal-days of
pedestrian recall. Neither the signs nor the statistical sig-
nificance of all coefficients of the two models (see below
about the model details) changed, except for that in the
phases model, the p-value for the Phase 1 variable
increased from .020 to .054 (i.e., marginally significant).

Level 2 Variables

Level 2 variables are only defined (and vary across) the
level 2 units (signals). These variables include measures
of the built environment, transportation system, and
neighborhood surrounding each signalized intersection.
Information about population and employment density,
residential and commercial land uses, four-way intersec-
tions, public transit stops, schools, places of worship,
and parks were assembled using 1=4-mile (400-meter;
5-minute walking distance) network buffers around each

signal. Additionally, neighborhood socio-demographic
characteristics like median household income, average
household size, and average vehicle ownership were cal-
culated. Such data were obtained from the American
Community Survey (ACS) 2013 to 2017 (Census
block groups), the Longitudinal Employer-Household
Dynamics (LEHD) program (Census blocks), the Utah
Automated Geographic Reference Center (AGRC) for
2019 (parcels and places), and OpenMobilityData for
2019 (transit stops). We checked the multicollinearity
among the explanatory variables, and none of those had
a variance inflation factor (VIF) of 10 or higher. See
Table 1 for definitions and descriptive statistics of inde-
pendent and dependent variables.

Methods

The structured nature of these data suggested that a mul-
tilevel modeling approach was appropriate, with daily
counts of pedestrian activity nested within intersections.
While multilevel models address within-intersection cor-
relation of pedestrian counts, they do not account for
spatial structure in the data, that is, the similarity in
counts for intersections that are located close together.
The basic multilevel model described above was tested
for residual autocorrelation using Moran’s I. The results
(I=0.09, Z=3.39; p=0.00035) indicated significant
spatial autocorrelation and therefore lack of indepen-
dence in the errors. Spatial autocorrelation can be
accounted for in multilevel models using covariance
functions (43). However, this requires the estimation of
two different random effects, which can be computation-
ally demanding for large data sets. Griffith (44) proposed
an eigenvector spatial filtered multilevel (ESF-ML)
model approach as an alternative approach. In spatial
filtering, residuals from a model are decomposed into a
spatially varying error and a random noise term (45). A
spatial filter is then created by iteratively selecting spatial
patterns that, when aggregated together, match the spa-
tially varying error. The filter is subsequently incorpo-
rated as an extra term in the model. The filter ‘‘whitens’’
the model residuals by removing a spatial dependency.
While spatial filtering has been widely applied to non-
multilevel models (46), applications to multilevel models
are rarer. However, this method has been successfully
applied to a variety of outcomes, including migration
flows (47), health outcomes (Park and Kim [48]), and
house prices (49).

For a spatio-temporal data set, the ESF-ML model is
written as

yi, t =bXt + gZi + dEi + bi + Ei, t

where yi, t is the pedestrian count for intersection i at time
t; Xt is the set of time-varying covariates at time t (see
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‘‘LEVEL 1’’ variables in Table 1); Zi is the set of
intersection-level covariates (see ‘‘LEVEL 2’’ variables in
Table 1); bi is the random effects for intersection i; and
Ei, t is random unstructured noise. Both bi and Ei, t are
assumed to be normally distributed with a mean of zero.
Ei is the set of spatial eigenvectors (EVs) for intersection
i. b, g, and d represent vectors of coefficients to be esti-
mated. EVs are derived from eigen decomposition of the
following matrix (Griffith [44]):

(I � 1 � 1T=n) � W � (I � 1 � 1T=n)

For n locations, W is a spatial weight matrix of size
n 3 n, where non-zero entries indicate spatial connectiv-
ity between two locations. T is the transpose operator.
Connectivity between locations was determined using a
Gabriel graph network (50).

This resulted in n candidate EVs, each representing a
possible spatial pattern from highly positively autocorre-
lated to highly negatively autocorrelated. As the EVs

were created through eigendecomposition, the EVs were
orthogonal and uncorrelated with each other. An itera-
tive, stepwise procedure was then used to build the spa-
tial filter. In the first iteration, we estimated a set of
multilevel models, where each one included one EV and
the set of all other covariates. Moran’s I was calculated
for each of these models, and we selected the one that
resulted in the greatest reduction in the value of I. The
EV from that model was then retained, and the next
iteration estimated a new set of models using the remain-
ing EVs. This stepwise procedure was repeated until the
autocorrelation was no longer significant (i.e., p.0:05).
Tests with higher thresholds (e.g., p.0:1) resulted in no
change in the direction of inference on the coefficients.
The selected EVs were then used to construct the final,
spatially filtered model. For the data set used here, the
final filter consisted of six EVs for both models, with a
Moran’s I value of 0.046 ( p= :050) for the count model,
and a Moran’s I value of 0.045 ( p= :055) for the phases
model, respectively. Thus, these results indicate no

Table 1. Definitions and Descriptive Statistics of Independent and Dependent Variables

Variable Definition
Mean (proportion

for dummy variables)
Standard
deviation

LEVEL 1: day (n = 520,736; 670 days per intersection)
Pedestrian traffic volume Estimated daily total pedestrian crossing

volumes, measured at each signal on each day
from January 1, 2019 to October 30, 2020 (see
37 for methodology)

353.90 39,236.82

Daily COVID-19 case counts Daily COVID-19 case counts for Salt Lake
County

80.54 151.27

Weekend (dummy) 1 = yes, 0 = no 0.29 0.45
Daily temperature In degrees Fahrenheit 58.12 18.85
Daily temperature (90� or higher; dummy) 1 = yes (90� Fahrenheit or higher), 0 = no 0.003 0.06
Daily precipitation In inches 0.04 0.12
Snow (dummy) 1 = yes, 0 = no 0.07 0.26
Pedestrian recall (dummy) 1 = yes (pedestrian recall between April 20th and

June 29, 2020 in and around downtown Salt
Lake City), 0 = no

0.01 0.08

LEVEL 2: intersection and 1=4-mile buffer (n = 904)
Population density 1,000 population per square mile (2.59 km2) 4.68 2.55
Employment density 1,000 jobs per square mile (2.59 km2) 7.43 12.69
% Residential parcels Percentage of residential parcels 36.51 25.10
% Commercial parcels Percentage of commercial parcels 29.42 21.79
% 4-Way intersections Percentage of 4-way intersections 25.46 19.00
Public transit stops Number of public transit stops 5.65 4.16
Schools Number of K-12 schools 0.32 0.63
Places of worship Number of places of worship 0.53 0.86
Park (acre) Total acreage of parks 1.84 4.35
Median household income Median household income ($1,000) 63.03 24.24
Household size Average number of people per household (log-

transformed)
2.90 0.94

Average vehicles Average number of cars per housing unit 1.60 0.51
Major road (dummy) 1 = yes (signals located within 30 m from major

arterials), 0 = no
0.58 0.49

Salt Lake City (dummy) 1 = yes (signals located within Salt Lake City),
0 = no

0.36 0.48
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significant spatial autocorrelation issue. All models were
estimated using restricted maximum likelihood with the
lme4 package (51) in R 4.1.1. Code to run the spatial fil-
ter is available through https://github.com/simonbrewer/
covid_signal.

Results

Pedestrian Traffic Volume Trend during the COVID-19
Pandemic

Overall, pedestrian traffic volume in Salt Lake County
decreased 26.3% during the COVID-19 pandemic. From
March through October 2019, the daily pedestrian esti-
mate was 133 people per intersection. During the same
months of 2020, the number decreased to 98. By month
in 2020, the average pedestrian estimate was lowest in
April (86.7 per day per intersection) and highest in
September (106.3 per day per intersection).

The pedestrian volume reduction between the two
years was highest in April (53% decrease; 245.6/day)
and August (44% decrease; 243.7/day) and lowest in
January (1% increase; +1.4/day) and February (9%
increase; +9.6/day). T-test results show that the differ-
ences between the two years are statistically significant in
April through October, but not in January through
March, at p\ .05 significance level (Figure 2).

To help visualize these results, in Figure 3, we present
example maps showing pedestrian volumes pre-COVID
and during each of the three phases (1: high risk, 2: mod-
erate risk, 3: second peak). To account for day-of-week
variations, daily volumes are averaged over a 7 day
period centered on the date specified in the figure. Each
map shows average daily pedestrian crossing volumes,
depicted proportionally to the area of the circles. For the
COVID-19 phase maps in 2020, the color of the circle is

related to the percentage change over the same week in
2019.

Multilevel Spatial Filtering Model with Interaction
Terms

Table 2 shows the results of a multilevel spatial filtering
model with interaction terms with daily COVID-19 case
counts. Before the pandemic, pedestrian estimates were
positively related to population density, percentage of
commercial land uses, public transit access, school and
park access, and being in Salt Lake City, while negatively
associated with a median household income of neighbor-
hoods near the interaction.

The interaction terms between the COVID-19 case
counts and built environmental variables were mostly
negative, meaning that the higher the number of
COVID-19 cases, the less (or more negative) the associa-
tion of the density, street connectivity, and destination
accessibility with pedestrian volume was. For example,
while a 10% increase in population density near an inter-
section yielded a 4.85% increase in pedestrian volume
pre-COVID-19, the elasticity value dropped to 4.21%
when Salt Lake County had 500 daily COVID-19
cases—(0.48520.000133 500)3 10. Such a reduction
was more remarkable in employment centers (elasticity
of 0.048 for pre-COVID dropping to 0.004 for 500 daily
COVID-19 cases) than in population centers, as
hypothesized.

Likewise, we found a negative interaction term
between the COVID-19 cases and the percentage of com-
mercial parcels (an elasticity of 0.014 dropping to 0.009
for 500 cases). Among the other built-environment vari-
ables, we also observed declining associations of the per-
centage of four-way intersections (a measure of street
network connectivity) and the number of public transit

Figure 2. Daily pedestrian volume estimates per intersection by month in 2019 and 2020.
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Figure 3. Average daily estimates of pedestrian volumes, pre-COVID and during each phase: (a) pedestrian volumes, pre-COVID (week
centered on January 4, 2019), (b) pedestrian volumes, Phase 1 (high risk) (week centered on January 4, 2020), (c) pedestrian volumes,
Phase 2 (moderate risk) (week centered on July 1, 2020), and (d) pedestrian volumes, Phase 3 (second peak) (week centered on October
15, 2020).
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stops, schools, and places of worship with pedestrian vol-
ume as COVID-19 case counts increased. More notice-
able drops were observed for access to schools (an
elasticity of 0.135 dropping to 0.084 for 500 cases) and
to places of worship (an elasticity of 0.019 turning nega-
tive, 20.088, for 500 cases).

Interestingly, accessible park acreage near an intersec-
tion became even more significant in increased pedes-
trian traffic volume during the pandemic. Unlike the pre-
COVID period when pedestrians were more observed in
lower-income areas, the elasticity of income became
smaller as the COVID-19 case count increased. The coef-
ficient of median household income variable ($1,000)
dropped by half from 20.007 pre-COVID to 20.003
during COVID-19 with 500 daily cases. The interaction
terms with COVID-19 case counts were positive with
household size and a major road dummy and negative
with being in Salt Lake City, which means that the nor-
mally higher level of pedestrian volume in the City was
less evident during the pandemic.

In respect of the temporal variables, pedestrian traffic
volume increased with daily temperature and decreased
with it being a hot day (over 90� in Fahrenheit), precipi-
tation, snow, and weekends during the past 2 years
(January 2019 to October 2020). The use of pedestrian

recall to avoid push-button use during COVID-19 low-
ered pedestrian estimates at those intersections, as
expected.

Then, Table 3 shows the results of a multilevel spatial
filtering model with interaction terms with three COVID-
19 restriction phases. In Salt Lake County, pedestrian
traffic volumes were actually higher in Phase 1 (high risk;
March 6, 2020–April 30, 2020) compared with the pre-
COVID period, when other temporal and environmental
variables are controlled, and dropped significantly after-
ward. The phases coincide with different seasons. For
instance, the negative interaction between schools and
Phase 2 could be a ‘‘summer break’’ effect.

The results show varying relationships between the
environmental variables and pedestrian estimates by the
COVID-19-related restriction phases. The COVID-19
pandemic reduced the association between population
density and pedestrian volume more profoundly in later
phases. Aligned with the count-based model, reductions
in pedestrian traffic volume were greater in areas with
higher employment density and commercial land uses
than those with residential density. The negative interac-
tion terms with other D variables, including percentage
of four-way intersections and the number of transit stops,
were more apparent in earlier pandemic phases.

Table 2. Coefficients of Variables in a Multilevel Spatial Filtering Model with Interaction Terms with Daily COVID-19 Case Counts

Pre-COVID (January 1,
2019–March 5, 2020)

Interaction terms with daily COVID-19
cases (March 6, 2020–October 31, 2020)

LEVEL 1: day (n = 520,736; 670 days per intersection)
Intercept 3.697**
Daily COVID-19 case counts 20.0004**
Weekend (dummy) 20.586**
Daily temperature 0.004**
Daily temperature (90� or higher; dummy) 20.196**
Precipitation 20.388**
Snow (dummy) 20.257**
Pedestrian recall (dummy) 20.756**

LEVEL 2: intersection and 1=4-mi buffer (n = 904)
Population densitya 0.485** 20.00013**
Employment densitya 0.048 20.00009**
% Commercial parcels 0.014** 20.00001**
% 4-Way intersections 20.003 20.00001**
Public transit stops 0.065** 20.00001**
Schools 0.135* 20.00010**
Places of worship 0.019 20.00021**
Park (acre)a 0.041** 0.000004***
Median household income 20.007** 0.00001**
Household sizea 20.115 0.00011**
Major road (dummy) 0.080 0.00016**
Salt Lake City (dummy) 0.260* 20.00006**
Random effects Level 1 (day) variance: 1.179

Level 2 (intersection) variance: 0.592

Note: The dependent variable is log-transformed pedestrian traffic volume estimates. Coefficients of Moran eigenvectors are hidden.
aLog-transformed.
*p\.05. **p\.01. ***p\.1.
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In respect of the role of urban park accessibility, pedes-
trian traffic volume was only negatively related to park
access when the COVID-19 outbreak started (Phase 1) and
then became insignificant in subsequent phases. In other
words, the positive effect of park availability on pedestrian
volume (an elasticity of 0.041) remains consistent.

Discussion and Conclusions

In this study, we compare pedestrian traffic volume
between 2019 and 2020 and find a 26% decrease on aver-
age, with higher reductions in April, May, and August.
The pedestrian volume reductions in 2020 compared
with 2019 are statistically significant in April through
October but not for January through March. Then we
run two spatial filtering models about the estimated
pedestrian traffic volume and spatial and temporal attri-
butes. We find that the COVID-19 pandemic and related
travel restrictions have altered the relationship between
pedestrian traffic volume and the pre-existing built-

environment conditions, confirming our conceptual
framework (Figure 1). Two spatio-temporal regression
models show the statistical significance of both main
effects of the COVID-19 factors and their interaction
terms with the built-environment variables.

Before the pandemic, pedestrian estimates were posi-
tively related to population density, commercial land
uses, access to public transit stops, schools, and parks,
while negatively associated with a median household
income of neighborhoods near the interaction. These
results align with the impact of built-environment ‘‘D
variables’’ on pedestrian volumes and walking, as docu-
mented in the literature (2, 26, 29, 52, 53). Different from
the previous studies (Miranda-Moreno and Fernandes
[29]), employment density is not a significant predictor of
pedestrian volume in our models, which could be because
of its correlation with the percentage of commercial par-
cels (r=0.48; p\ .01).

During the pandemic, however, the higher the number
of COVID-19 cases, the less (or more negative) the

Table 3. Coefficients of Variables in a Multilevel Spatial Filtering Model with Interaction Terms with Three COVID-19 Restriction Phases

Pre-COVID (January 1,
2019–March 5, 2020)

Interaction with phases

Phase 1
(high risk)

March 6–April
30, 2020

Phase 2
(moderate risk)
May 1–October

12, 2020

Phase 3 (second peak)
October 13–31,

2020

LEVEL 1: day (n = 520,736; 670 days per intersection)
Intercept 3.596**
Phase 1 (high risk) na 0.052* na na
Phase 2 (moderate risk) na na 20.165** na
Phase 3 (second peak) na na na 20.079*
Weekend (dummy) –0.580**
Daily temperature 0.006**
Daily temperature (90� or higher; dummy) –0.208**
Precipitation –0.432**
Snow (dummy) –0.264**
Pedestrian recall (dummy) –0.254**

LEVEL 2: intersection and 1=4-mi buffer (n = 904)
Population densitya 0.485** 20.014* 20.030** 20.080**
Employment densitya 0.067*** 20.081** 20.069** 20.018*
% Commercial parcels 0.015** 20.006** 20.004** 20.004**
% 4-Way intersections 20.002 20.005** 20.004** 20.001**
Public transit stops 0.068** 20.016** 20.010** 20.002
Schools 0.136* 0.005 20.033** 20.007
Places of worship 0.029 20.036** 20.082** 20.072**
Park (acre)a 0.041** 20.007** 20.001 20.002
Median household income 20.008** 0.004** 0.004** 0.001*
Household sizea 20.093 20.094** 20.025** 0.127**
Major road (dummy) 0.066 0.053** 0.082** 0.023
Salt Lake City (dummy) 0.271** 0.001 20.064** 20.011
Random effects Level 1 (day) variance: 1.175

Level 2 (intersection) variance: 0.560

Note: na = not applicable. The dependent variable is log-transformed pedestrian traffic volume estimates. Coefficients of Moran eigenvectors are hidden.
aLog-transformed.

*p\.05. **p\.01. ***p\.1.
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associations between pedestrian volume and the density,
street connectivity, and destination accessibility being
observed (Table 2). Employment centers and places with
more commercial land uses seem to have been more
greatly affected than more residential areas, reflecting the
impact that the pandemic has had on increasing telework
and reducing public transportation use (18, 19). Some
employment centers may not be functioning as employ-
ment centers during the lockdown. But such reductions
in pedestrian activity in commercial centers may not
entirely persist once the pandemic conditions recede.
Compared with earlier phases, during the third phase of
COVID conditions in Utah (October 13–October 31,
2020), the reduced impact of employment density has
diminished (Table 3).

Our models also show moderating effects of the pan-
demic conditions in respect of other built-environment
characteristics. At later pandemic stages, the relation-
ships between pedestrian activities and access to schools
and transit stops have returned to their pre-COVID level
(Table 3). On the other hand, the declining association
of access to places of worship with pedestrian volume
has been consistently observed through all three stages,
which might imply ongoing impacts post-pandemic.

An exception to this overall trend of reduced built-
environment associations with pedestrian activity during
COVID is access to urban parks. Accessible park acreage
near an intersection became even more significant in
increased pedestrian traffic volume during the pandemic
(Table 2). Other studies also show that park visitation
has increased since the COVID-19 outbreak in most
countries (54) or decreased least compared with other
types of travel during the early phases of the pandemic
(14). People used parks and trails as a refuge to relax,
exercise, and socialize, and thus, to overcome physical
and mental issues caused by shelter-in-place and limited
social relationships (55). Although this result may revert
once conditions are ‘‘back to normal’’ and people spend
more time in commercial/office/retail areas, it is possible
that people have caught the habit of walking for recrea-
tion and will continue to make increased pedestrian trips
near parks, as shown in Salon et al. (56). For all the dam-
age it has caused, the pandemic could serve as a shock
that results in sustained active and sustainable travel
behavior change, as long as efforts are made to encour-
age continued walking activity. This trend should con-
tinue to be monitored, and investments could be made to
provide easier nonmotorized access to parks, trails, and
other recreational areas.

Our findings of varying influences of the built envi-
ronment on pedestrian traffic volume could be used to
adjust travel demand models in regional transportation
planning practice. Recently, regional travel demand
models started to incorporate pedestrian travel into the

modeling framework thanks to the advancement of data
collection (3, 4). Without appropriate evidence, the cur-
rent travel demand models may not accurately predict
pedestrian traffic volume during the pandemic or similar
disruptions in travel behavior. Even if it may be unrealis-
tic to expect regional models to become sensitive to
unanticipated population-wide shocks to travel beha-
viors, shocks such as the COVID-19 pandemic, the find-
ings about changes in built-environment relationships
with walking suggest that travel forecasting systems
should continue to become more flexible and responsive.
Actions such as utilizing more up-to-date big data
sources such as traffic signal data (used in this research)
or passive smartphone data (57), and further developing
the capabilities of citywide digital twins (58), could help
transportation planning to become more robust to future
disturbances.

The changes in how walking is related to density,
street connectivity, and destination accessibility (espe-
cially employment centers and commercial land uses)
also have the potential to affect other transportation
tasks that rely on assumptions or estimates of pedestrian
activity. For example, safety analysis requires measures
of pedestrian exposure at the level of intersections and
street segments. If the relationships inherent to direct-
demand built-environment models of pedestrian volumes
(59, 60) are changing, then static estimates of activity
may not reflect true pedestrian risk. This is particularly
important because preliminary 2020 U.S. traffic safety
data show a troubling continued increase in pedestrian
deaths despite significant decreases in vehicle distances
traveled (61). The models also highlight the potential
negative impacts of the pandemic in economically disad-
vantaged areas. Unlike the pre-COVID-19period, when
pedestrians were more observed in lower-income areas,
the elasticity of income became smaller as the COVID-
19 case count increased (Tables 2 and 3). This may imply
that travel patterns (in particular, recreational walking)
of economically disadvantaged people might have been
more affected by the pandemic-related conditions (e.g.,
health, employment, relationships). For example, Morse
et al. (62) show that higher-income individuals increased
outdoor social and recreational activities during the
COVID-19 pandemic more than low-income people.

These findings call for appropriate and timely policy
actions to promote active transportation and physical
activity among the socio-economically disadvantaged
population. Promoting active travel encourages people to
maintain a higher level of well-being (21, 63). Major cities
worldwide (e.g., Berlin, Vienna, Philadelphia, Vancouver,
Bogotá, and Mexico City) have either temporarily or per-
manently turned car lanes into sidewalks and bike lanes
(63). Other examples to encourage active transportation
during the pandemic include restricting cars from certain
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streets, adding cycling parking, allowing bicycles on foot-
paths, and reducing waiting time at crossroads for pedes-
trians (18). But Schmidt’s (64) study finds that such street
closures were implemented more in wealthier regions,
which is worse in larger cities. Thus, appropriate interven-
tions through an environmental justice lens—for example,
prioritizing open streets projects in lower-income commu-
nities, especially to access parks and public transit—are
warranted to address the pandemic’s uneven impacts on
different socioeconomic groups (13, 24).

This study has strengths as land use-transportation
research in its use of big data (670 days times 904 inter-
sections) in a city, a robust statistical approach addres-
sing both spatial and temporal dependency, and an
examination of multiple travel restriction phases and a
focus on pedestrian transportation during the COVID-
19 pandemic. On the other hand, a future study could
expand the study sites to multiple cities or countries to
ensure the external validity of the models. For example,
since Salt Lake County is an urban county at the center
of a larger region, different relationships and changes
may be seen in smaller or more rural communities. Also,
as not all the built-environment variables are easily
obtainable for regional planning agencies, such as metro-
politan planning organizations, more parsimonious mod-
els of predicting pedestrian traffic volume would be
needed for their practical uses. Additionally, future work
should continue this line of analysis to cover more recent
stages of the pandemic (including when vaccines were
widely available) and beyond to determine whether
changes in built-environment relationships with walking
persist into the new normal period. Nevertheless, this
study provides a foundation for subsequent practice
steps and sheds light on the importance of appropriate
and timely interventions to promote active transporta-
tion and physical activity amid the global pandemic.
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